METHODOLOGY OF DETERMINATION OF DIGITAL MATURITY LEVEL OF BUSINESS STRUCTURES BY CLUSTERING METHOD

  • Iryna Strutynska Ternopil Ivan Puluj National Technical University https://orcid.org/0000-0001-5667-6569
  • Lesia Dmytrotsa Ternopil Ivan Puluj National Technical University
  • Halyna Kozbur Ternopil Ivan Puluj National Technical University
Keywords: digital economy, digital technologies, data clustering, survey of respondents, statistic techniques, business-structures of SMEs

Abstract

Adaptation and transformation of business through digital are the major problem in solving the challenges of the global market. Information technologies allow any company to change its own business model to differentiate itself from the global market. Given the gaps in the statistical support for monitoring the development of the digital economy and building the information society, it is advisable to intensify the work of key stakeholders in the implementation of the Action Plan for the implementation of the Concept of the development of the digital economy and society of Ukraine for 2018-2020. The development of a system of indicators of digital business transformation, the provision of regular assessments of digital development and the introduction of regular, systematic statistical observations are particularly noteworthy. This, in turn, involves modifying existing statistical forms on the use of the Internet by the public and information and communication technology (ICT) at enterprises, and developing new indicators, methodological and organizational support for the collection and analysis of new data. Given the relevance of this issue, the article analyzes the method of collecting important data through a survey and the method of their analysis by the respondents' clustering method. An innovative statistical survey methodology was developed on the digital transformation of small and medium-sized business structures, namely: indicators were proposed, respondents were surveyed, data were prepared (techniques for their purification and further processing, including coding were proposed); respondents (business entities registered in the Ternopil oblast) were surveyed regarding their level of digital maturity; the data of the relevant surveys (studies) were elaborated by solving the problem of data analysis, namely, the clustering of the research subjects with the use of advanced information technologies of data analysis was carried out and the corresponding results were analyzed. The result of this research will be an in-depth understanding of the problems and the real state of use of digital by domestic business entities in their own business activities.

References

Про схвалення Концепції розвитку цифрової економіки та суспільства України на 2018–2020 роки. URL : https://www.kmu.gov.ua/ua/npas/pro-shvalennya-koncepciyi-rozvitku-cifrovoyi-ekonomiki-ta-suspilstva-ukrayini-na-20182020-roki-ta-zatverdzhennya-planu-zahodiv-shodo-yiyi-realizaciyi (дата звернення: 17.10.2019).

Коляденко С.В. Цифрова економіка: передумови та етапи становлення в Україні й у світі. Економіка. Фінанси. Менеджмент. 2016. № 6. С. 106–107.

Clustering Online Poll Data: Towards a Voting Assistance System / I. Katakis et al. 2012 Seventh International Workshop on Semantic and Social Media Adaptation and Personalization. URL : http://www.katakis.eu/wp-content/uploads/2014/11/katakis_smap12.pdf. DOI : 10.1109/SMAP.2012.19 (дата звернення: 20.10.2019).

McCaffrey J. Machine Learning Using C#. Syncfusion, 2014. Р. 148. URL : https://pt.b-ok.org/book/3097267/7356b0 (дата звернення: 17.10.2019).

Cluster analysis with balancing weights on mixed-type data / S.S. Chae et al. The Korean communications in statistics. 2002. № 13(3). DOI : org/10.5351/CKSS.2006.13.3.719.

Gower J.C. A comparison of some methods of cluster analysis. Biometrics. 1967. № 23. Р. 623–637. DOI : 10.2307/2528417.

Rand W.M. Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association. 1971.Vol. 66. № 336. Р. 846–850. DOI : 10.2307/2284239.

Hoven J. van den. Clustering with optimised weights for Gower's metric. University of Amsterdam. 2015. Р. 14–17. URL : https://www.math.vu.nl/~sbhulai/papers/thesis-vandenhoven.pdf (дата звернення: 17.10.2019).

Gower J.C. A General Coefficient of Similarity and Some of Its Properties. Biometrics. 1971. № 27(4). Р. 859. DOI : 10.2307/2528823.

Statistical Services Centre, Approaches to the Analysis of Survey Data. The University of Reading Statistical Services Centre Biometrics Advisory and Support Service to DFID. 2001. March. URL : https://www.ilri.org/biometrics/TrainingResources/Documents/University%20of%20Reading/Guides/Guides%20on%20Analysis/ApprochAnalysis.pdf (дата звернення: 20.10.2019).

Welcome to Python.org. URL : https://www.python.org (дата звернення: 20.10.2019).

Malik U. Hierarchical Clustering with Python and Scikit-Learn. Stack Abuse. 2018. July. URL : https://stackabuse.com/hierarchical-clustering-with-python-and-scikit-learn/ (дата звернення: 20.10.2019).

Scikit. Clustering documentation. URL : Scikit learn. https://scikit-learn.org/stable/modules/clustering.html (дата звернення: 18.10.2019).

Filaire T. Clustering on mixed type data. Medium. 2018. July. URL : https://towardsdatascience.com/clustering-on-mixed-type-data-8bbd0a2569c3 (дата звернення: 18.10.2019).

Plan of measures on implementation of the Conception of development of digital economy and society of Ukraine for the period from 2018 to 2020. URL: https://mtu.gov.ua/en/news/29453.html (access date October 17, 2019).

S. V. Koliadenko (2016) Tsyfrova ekonomіka: peredumovy ta etapy stanovlennia v Ukrainі і u svіtі [Digital economy: preconditions and stages of formation in Ukraine and in the world], Ekonomіka. Fіnansy. Menedzhment, no.6, pp. 106-107, 2016 (in Ukrainian)

I. Katakis, N. Tsapatsoulis, C. Tziouvas and F. Mendes. (2012). Clustering Online Poll Data: Towards a Voting Assistance System, 2012 Seventh International Workshop on Semantic and Social Media Adaptation and Personalization. URL: http://www.katakis.eu/wp-content/uploads/2014/11/katakis_smap12.pdf. doi: 10.1109/SMAP.2012.19 (access date October 20, 2019).

McCaffrey J. Machine Learning Using C#. Syncfusion, 2014, p. 148. URL: https://pt.b-ok.org/book/3097267/7356b0 (access date October 17, 2019).

Chae, S. S., Kim, J.-M. & Yang, W. Y., (2006). Cluster analysis with balancing weights on mixed-type data. The Korean communications in statistics, 13(3) doi.org/10.5351/CKSS.2006.13.3.719

Gower JC (1967) A comparison of some methods of cluster analysis. Biometrics 23:623–637 doi: 10.2307/2528417

William M. Rand (1971). Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association. Vol. 66, No. 336 (Dec., 1971), pp. 846-850 doi: 10.2307/2284239

J. van den Hoven. (2015). Clustering with optimised weights for Gower's metric. University of Amsterdam. pp.14-17. URL: https://www.math.vu.nl/~sbhulai/papers/thesis-vandenhoven.pdf (access date October 17, 2019).

Gower, J. C., (1971). A General Coefficient of Similarity and Some of Its Properties. Biometrics, 27(4), p. 859. doi: 10.2307/2528823

Statistical Services Centre, (2001, March) Approaches to the Analysis of Survey Data. The University of Reading Statistical Services Centre Biometrics Advisory and Support Service to DFID. URL: https://www.ilri.org/biometrics/TrainingResources/Documents/University%20of%20Reading/Guides/Guides%20on%20Analysis/ApprochAnalysis.pdf

Welcome to Python.org. URL: https://www.python.org (access date October 20, 2019).

U. Malik. (2018 July). Hierarchical Clustering with Python and Scikit-Learn. Stack Abuse. URL: https://stackabuse.com/hierarchical-clustering-with-python-and-scikit-learn/ (access date October 20, 2019).

Scikit. Clustering documentation. Scikit learn. URL: https://scikit-learn.org/stable/modules/clustering.html (access date October 18, 2019).

T. Filaire. (2018, July). Clustering on mixed type data. Medium. URL: https://towardsdatascience.com/clustering-on-mixed-type-data-8bbd0a2569c3 (access date October 18, 2019).

Published
2019-12-30
How to Cite
Strutynska, I., Dmytrotsa, L., & Kozbur, H. (2019). METHODOLOGY OF DETERMINATION OF DIGITAL MATURITY LEVEL OF BUSINESS STRUCTURES BY CLUSTERING METHOD. Entrepreneurship and Innovation, (10), 188-194. https://doi.org/10.37320/2415-3583/10.29
Section
Mathematical methods, models and information technologies in economics